ICMT Division A Sample Problems

1. Evaluate

$$\sum_{n=1}^{\infty} \frac{(n-1)!}{(n+4)!}.$$

- 2. A group G has four distinct generators a, b, c, d (so that every element of G is a product of these four elements or their inverses). The group G also has the 16 relations $xyxy = 1_G$ for all $x, y \in \{a, b, c, d\}$, where 1_G is the group identity. What is the minimum number of relations that need to be added to G to make the number of distinct elements of G finite?
- 3. Let $\mathcal{M} = \mathbb{F}_4^{4 \times 4}$ be the set of 4×4 matrices with elements in \mathbb{F}_4 . Let \mathcal{N} be the nilpotent subgroup of \mathcal{M} ; i.e.

$$\mathcal{N} = \{ M \in \mathcal{M} : \exists n \in \mathbb{N}, \, M^n = 0 \}.$$

Define the equivalence relation $A \sim B$ for matrices in \mathcal{M} if there exists invertible $V \in \mathcal{M}$ such that AV = VB. Compute $|\mathcal{N}/ \sim |$.

4. Define S_N to be the number of integral solutions (x, y, z) to the equation x + y + z = 0 such that $-N \le x, y, z \le N$ and gcd(x, y) = gcd(y, z) = gcd(z, x) = 1. Compute

$$\lim_{N \to \infty} \frac{S_N}{N^2}$$

5. Let S be the set of all differentiable functions with continuous derivatives $f:[0,1] \to \mathbb{R}$ such that

$$\int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1$$

Compute

$$\inf_{f \in S} \left(\int_0^1 (f'(x))^2 \, dx \right).$$

6. Compute the number of ordered pairs (g, h) of elements of S_5 , the group of permutations of 5 elements, such that gh = hg.